Transforming growth factor-beta 1 increases bad phosphorylation and protects neurons against damage.

نویسندگان

  • Yuan Zhu
  • Guo-Yuan Yang
  • Barbara Ahlemeyer
  • Li Pang
  • Xiao-Ming Che
  • Carsten Culmsee
  • Susanne Klumpp
  • Josef Krieglstein
چکیده

Despite the characterization of neuroprotection by transforming growth factor-beta1 (TGF-beta1), the signaling pathway mediating its protective effect is unclear. Bad is a proapoptotic member of the Bcl-2 family and is inactivated on phosphorylation via mitogen-activated protein kinase (MAPK). This study attempted to address whether MAPK signaling and Bad phosphorylation were influenced by TGF-beta1 and, furthermore, whether these two events were involved in the antiapoptotic effect of TGF-beta1. We found a gradual activation of extracellular signal-regulated kinase 1/2 (Erk1/2) and MAPK-activated protein kinase-1 (also called Rsk1) and a concomitant increase in Bad phosphorylation at Ser(112) in mouse brains after adenovirus-mediated TGF-beta1 transduction under nonischemic and ischemic conditions induced by transient middle cerebral artery occlusion. Consistent with these effects, the ischemia-induced increase in Bad protein level and caspase-3 activation were suppressed in TGF-beta1-transduced brain. Consequently, DNA fragmentation, ischemic lesions, and neurological deficiency were significantly reduced. In cultured rat hippocampal cells, TGF-beta1 inhibited the increase in Bad expression caused by staurosporine. TGF-beta1 concentration- and time-dependently activated Erk1/2 and Rsk1 accompanied by an increase in Bad phosphorylation. These effects were blocked by U0126, a mitogen-activated protein kinase/Erk kinase 1/2 inhibitor, suggesting an association between Bad phosphorylation and MAPK activation. Notably, U0126 and a Rsk1 inhibitor (Ro318220) abolished the neuroprotective activity of TGF-beta1 in staurosporine-induced apoptosis, indicating that activation of MAPK is necessary for the antiapoptotic effect of TGF-beta1 in cultured hippocampal cells. Together, we demonstrate that TGF-beta1 suppresses Bad expression under lesion conditions, increases Bad phosphorylation, and activates the MAPK/Erk pathway, which may contribute to its neuroprotective activity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Laminar Organization of Cerebral Cortex in Transforming Growth Factor Beta Mutant Mice

Transforming growth factor betas (TGF?s) are one of the most widespread and versatile cytokines. The three mammalian TGF? isoforms, ?1, ?2, and ?3, and their receptors regulate proliferation of neuronal precursors as well as survival and differentiation in neurons of developing and adult nervous system. Functions of TGF?s has a wide spectrum ranging from regulating cell proliferation and differ...

متن کامل

TGF-beta1-induced long-term changes in neuronal excitability in aplysia sensory neurons depend on MAPK.

Transforming growth factor beta-1 (TGF-beta1) plays important roles in the early development of the nervous system and has been implicated in neuronal plasticity in adult organisms. It induces long-term increases in sensory neuron excitability in Aplysia as well as a long-term enhancement of synaptic efficacy at sensorimotor synapses. In addition, TGF-beta1 acutely regulates synapsin phosphoryl...

متن کامل

HER2/Neu (ErbB2) signaling to Rac1-Pak1 is temporally and spatially modulated by transforming growth factor beta.

In HER2 (ErbB2)-overexpressing cells, transforming growth factor beta (TGF-beta), via activation of phosphoinositide-3 kinase (PI3K), recruits actin and actinin to HER2, which then colocalizes with Vav2, activated Rac1, and Pak1 at cell protrusions. This results in prolonged Rac1 activation, enhanced motility and invasiveness, Bad phosphorylation, uncoupling of Bad/Bcl-2, and enhanced cell surv...

متن کامل

Transforming growth factor beta 1 induces apoptosis through cleavage of BAD in a Smad3-dependent mechanism in FaO hepatoma cells.

Transforming growth factor beta (TGF-beta) induces apoptosis in a variety of cells. We have previously shown that TGF-beta 1 rapidly induces apoptosis in the FaO rat hepatoma cell line. We have now studied the effect of TGF-beta 1 on the expression of different members of the Bcl-2 family in these cells. We observed no detectable changes in the steady-state levels of Bcl-2, Bcl-X(L), and Bax. H...

متن کامل

Transforming Growth Factor-β1 Preserves Bovine Nasal Cartilage against Degradation Induced by Interleukin-1α in Explant Culture

Background and Aims: Chondrocytes and their differentiation play a central role in joint diseases. Effect of the transforming growth factor (TGF)-β1 on chondrocyte characteristics and differentiation is not clearly understood. This study was undertaken to investigate the effects of TGF-β1 on tissue characteristics and morphology of chondrocytes against degradation induced by interleuk...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 22 10  شماره 

صفحات  -

تاریخ انتشار 2002